56 research outputs found

    Integrability and regularity of 3D Euler and equations for uniformly rotating fluids

    Get PDF
    AbstractWe consider 3D Euler and Navier-Stokes equations describing dynamics of uniformly rotating fluids. Periodic boundary conditions are imposed, and the ratio of domain periods is assumed to be generic (nonresonant). We show that solutions of 3D Euler/Navier-Stokes equations can be decomposed as U(t, x1, x2, x3) = Ũ(t, x1, x2) + V(t, x1, x2, x3) + r where Ũ is a solution of the 2D Euler/Navier-Stokes system with vertically averaged initial data (axis of rotation is taken along the vertical 3). Here r is a remainder of order Ro12a where Roa = (H0U0(Щ0L20) is the anisotropic Rossby number (H0—height, L0—horizontal length scale, Щ0—angular velocity of background rotation, U0—horizontal velocity scale); Roa = (H0L0)Ro where H0L0 is the aspect ratio and Ro = U0(Щ0L0) is a Rossby number based on the horizontal length scale L0. The vector field V(t, x1, x2, x3) which is exactly solved in terms of 2D dynamics of vertically averaged fields is phase-locked to the phases 2Щ0t, τ1(t), and τ2(t). The last two are defined in terms of passively advected scalars by 2D turbulence. The phases τ1(t) and τ2(t) are associated with vertically averaged vertical vorticity curl Ū(t) · e3 and velocity Ū3(t); the last is weighted (in Fourier space) by a classical nonlocal wave operator. We show that 3D rotating turbulence decouples into phase turbulence for V(t, x1, x2, x3) and 2D turbulence for vertically averaged fields Ū(t, x1, x2) if the anisotropic Rossby number Roa is small. The mathematically rigorous control of the error r is used to prove existence on a long time interval T∗ of regular solutions to 3D Euler equations (T∗ → +∞, as Roa → 0); and global existence of regular solutions for 3D Navier-Stokes equations in the small anisotropic Rossby number case

    Global Well-posedness of an Inviscid Three-dimensional Pseudo-Hasegawa-Mima Model

    Full text link
    The three-dimensional inviscid Hasegawa-Mima model is one of the fundamental models that describe plasma turbulence. The model also appears as a simplified reduced Rayleigh-B\'enard convection model. The mathematical analysis the Hasegawa-Mima equation is challenging due to the absence of any smoothing viscous terms, as well as to the presence of an analogue of the vortex stretching terms. In this paper, we introduce and study a model which is inspired by the inviscid Hasegawa-Mima model, which we call a pseudo-Hasegawa-Mima model. The introduced model is easier to investigate analytically than the original inviscid Hasegawa-Mima model, as it has a nicer mathematical structure. The resemblance between this model and the Euler equations of inviscid incompressible fluids inspired us to adapt the techniques and ideas introduced for the two-dimensional and the three-dimensional Euler equations to prove the global existence and uniqueness of solutions for our model. Moreover, we prove the continuous dependence on initial data of solutions for the pseudo-Hasegawa-Mima model. These are the first results on existence and uniqueness of solutions for a model that is related to the three-dimensional inviscid Hasegawa-Mima equations

    Continuation for thin film hydrodynamics and related scalar problems

    Full text link
    This chapter illustrates how to apply continuation techniques in the analysis of a particular class of nonlinear kinetic equations that describe the time evolution through transport equations for a single scalar field like a densities or interface profiles of various types. We first systematically introduce these equations as gradient dynamics combining mass-conserving and nonmass-conserving fluxes followed by a discussion of nonvariational amendmends and a brief introduction to their analysis by numerical continuation. The approach is first applied to a number of common examples of variational equations, namely, Allen-Cahn- and Cahn-Hilliard-type equations including certain thin-film equations for partially wetting liquids on homogeneous and heterogeneous substrates as well as Swift-Hohenberg and Phase-Field-Crystal equations. Second we consider nonvariational examples as the Kuramoto-Sivashinsky equation, convective Allen-Cahn and Cahn-Hilliard equations and thin-film equations describing stationary sliding drops and a transversal front instability in a dip-coating. Through the different examples we illustrate how to employ the numerical tools provided by the packages auto07p and pde2path to determine steady, stationary and time-periodic solutions in one and two dimensions and the resulting bifurcation diagrams. The incorporation of boundary conditions and integral side conditions is also discussed as well as problem-specific implementation issues

    Propagation phenomena in classical and relativistic rarefied gases

    No full text
    corecore